Artificial immune systems can find arbitrarily good approximations for the NP-hard number partitioning problem
نویسندگان
چکیده
منابع مشابه
Approximating Good Simultaneous Diophantine Approximations Is Almost NP-Hard
Given a real vector =(1; : : : ; d) and a real number " > 0 a good Diophantine approximation to is a number Q such that kQQ mod Zk1 ", where k k1 denotes thè1-norm kxk1 := max 1id jxij for x = (x1; : : : ; x d). Lagarias 12] proved the NP-completeness of the corresponding decision problem, i.e., given a vector 2 Q d , a rational number " > 0 and a number N 2 N+, decide whether there exists a nu...
متن کاملYet Another Graph Partitioning Problem is NP-Hard
Recently a large number of graph separator problems have been proven to be NPHard. Amazingly we have found that α-Subgraph-Balanced-Vertex-Separator, an important variant, has been overlooked. In this work “Yet Another Graph Partitioning Problem is NP-Hard” we present the surprising result that α-SubgraphBalanced-Vertex-Separator is NP-Hard. This is despite the fact that the constraints of our ...
متن کاملData-Driven Approximations to NP-Hard Problems
There exist a number of problem classes for which obtaining the exact solution becomes exponentially expensive with increasing problem size. The quadratic assignment problem (QAP) or the travelling salesman problem (TSP) are just two examples of such NP-hard problems. In practice, approximate algorithms are employed to obtain a suboptimal solution, where one must face a trade-off between comput...
متن کاملA Good Heart Is Hard to Find
Hypertrophic cardiomyopathy (HCM) is the most common inherited cardiac disease; yet, despite several decades of research, there is no specific disease-modifying therapy. Patients most often present with reduced exercise tolerance, heart failure, and cardiac arrhythmias. The discovery of specific HCM-causing mutations, advances in molecular medicine, and improved diagnostic techniques have gener...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Artificial Intelligence
سال: 2019
ISSN: 0004-3702
DOI: 10.1016/j.artint.2019.03.001